Code: 20EE4501A

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

UTILIZATION OF ELECTRICAL ENERGY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Discuss the temperature rise in motor. Derive the equation for Heating of Motor.	L3	CO4	7 M			
	b)	Explain the starting and running characteristics of DC motors.	L3	CO2	7 M			
	OR							
2		Illustrate the different types of electric drives in detail.	L3	CO2	14 M			
	UNIT-II							
3	a)	With neat sketch explain about dielectric heating.	L4	CO4	7 M			
	b)	Explain electric arc welding with fundamentals.	L3	CO4	7 M			
	OR							

Max. Marks: 70

4	a)	Explain working principle of induction	L3	CO2	7 M			
		furnace.						
	b)	What is meant by electric welding? Discuss						
		the advantages and disadvantages of electric	L2	CO1	7 M			
		welding.						
		UNIT-III						
5	a)	State and prove the laws of illumination.	L3	CO2	7 M			
	b)	With a neat diagram, explain the						
		construction and working of sodium vapour	L4	CO4	7 M			
		lamp.						
		OR		·I				
6	Illu	strate the different types of lightning	L3	CO2	14 M			
	sch	emes.	LJ	02	14 11			
		UNIT-IV						
7	a)	Explain about electric traction and state the						
		advantages of electric traction over other	L2	CO1	7 M			
		non-electrical systems.						
	b)	Analyze the trapezoidal and quadrilateral	L4	CO5	7 M			
		speed time curves.	L4	COS	/ 11/1			
OR								
8		nmarize the special features of traction	L3	CO3	14 M			
	mot	tors.						
UNIT-V								
9	a)	Analyze the mechanics of train movement	L4	CO5	7 M			
		with neat sketch.	L/ 1		/ 1 V1			

	b)	Derive an expression for specific energy consumption output on level track using a simplified speed time curve.	L4	CO5	7 M		
OR							
10	a)	Employ mathematical expression for the tractive effort developed by train unit.	L4	CO5	7 M		
	b)	Illustrate the different types of current collectors in OHE system.	L3	CO3	7 M		